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Abstract

We define perspective-aware computing as an emerging area
of computational innovation in which users of the system
can view and interact through each other’s points of view
without the need for a centralized recommendation system.
To achieve this, we propose a multi-modal neurosymbolic
graph generation approach to construct personalized models
known as “borrowable identities” from a user’s digital foot-
print, comprehending an individual’s cognitive and behav-
ioral tendencies in diverse and contexts. Applications of our
approach enable users of a trusted social network to view and
interact with information through each other’s perspective. In
summary, we allow individuals to lend their expertise to each
other, and advance classic digital personalization techniques
toward more participatory systems. This approach has poten-
tial in the design of less-biased recommendation systems in
areas such as Digital Immortality, peer-to-peer learning, and
in general, decentralized computational social systems.

Introduction
The concept of user modeling in the realm of human-
computer interaction (HCI) has been synonymous with the
process of collecting data from users, their preferences,
and providing more personalized and context-aware expe-
riences (Fischer 2001). In this classic approach, the source
user, from whom the data is collected, is either identical or
shares similarities with the target user that the machine aims
to serve. However, by shifting the user modeling approach,
we can now distinguish between the source and the target
users, thereby expanding the spectrum of HCI applications
towards scenarios relying on what we call “borrowable iden-
tities” and “Through-Perspective Computing”. By borrow-
able identities and In-Perspective Computing, we refer to
a digital representation reflecting one’s identity and behav-
ioral patterns that can be shared with others. This approach
enables individuals to perceive or even interact through the
unique lenses of each other with different viewpoints. These
lenses are essentially well-encapsulated knowledge-based
models in which their ontologies can dynamically adapt
based on the context of usage. It could also advance re-
search areas such as peer-to-peer learning, biased-reducing
systems, and emerging concepts such as digital immortality

that aim to extend a person’s digital presence and facilitate
conversations from their viewpoint in their physical absence.
This paradigm shift in creating user models offers humanity
the opportunity to gain valuable insights into how reality is
perceived from various perspectives, fostering understand-
ing and enriching not only human-machine, but also human-
human interactions.

Many user modeling approaches tend to focus on specific
data capture, such as analyzing user motion within well-
defined contexts like cyber-physical settings or interactions
with particular systems. These approaches often target a spe-
cific user category within a defined environment, lacking
adaptability for broader use cases (Anders et al. 2022). To
create a borrowable or digital identity as a computational
model of the user, an algorithm must go beyond simply un-
derstanding the user’s preferences in one specific domain,
and instead acquire knowledge of their cognitive processes
and behavioral patterns across domains, effectively captur-
ing the knowledge of their mentality and personality (Ners-
essian 1992; Treur and van Ments 2022). In today’s digital
age, as social media platforms become an integral part of
our lives, our online presence leaves an increasingly signif-
icant digital footprint. Every photo, status update, tweet, or
song we engage with paints a picture of our interests, rela-
tionships, and evolving personas that can continuously con-
tribute to a model, gradually revealing facets of our person-
ality. The objective is to systematically leverage the exten-
sive repository of any available digital footprint, augmenting
it by incorporating established theories from psychology, so-
cial science, and the humanities. This endeavor aims to craft
a digital representation, as a result of a formal computation,
that faithfully captures an individual’s cognitive processes,
evident in their digital journey, thereby reflecting their cog-
nitive paradigms and behavioral inclinations across various
scenarios.

Achieving this ambitious goal necessitates addressing a
series of critical challenges.

• C1: Efficiently collecting diverse data while respecting
user privacy.

• C2: Integrating multimodal data for consistent and rele-
vant representations.

• C3: Creating a coherent user mental model for informed
decision-making.
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Figure 1: Model architecture overview for creating a digital identity model of an individual using a neuro-symbolic, multi-
modal, and knowledge-aware solution

The challenges mentioned above underscore the complex-
ities associated with utilizing digital footprints to build dig-
ital mental models of individuals. In this position paper, we
propose a workflow founded on neurosymbolic (NeSy) AI
solutions, as depicted in Figure 1. This approach relies on
the integration of machine learning (for data perception and
feature learning) and machine reasoning (for identity infer-
ence through the construction of models adhering to rules
and constraints) (d’Avila Garcez and Lamb 2020).

In the following sections, we explore our proposed model,
specifically a fusion of a multi-modal knowledge-aware
graph learning model and a reasoning mechanism designed
to tackle challenges C2 and C3. This reasoning mechanism
aims to deduce potential causes from observed effects by
adhering to established theories and rules (Bochman 2003).
We also investigate potential solutions, such as decentralized
data models, to mitigate challenge C1.

Methodology
Figure 1 provides an overview of the architecture for our
proposed model. We assume that the data is sourced from
L data channels {c1, c2, ..., cL}, each associated with a spe-
cific data type (e.g., an image, a piece of text, etc.). In the
realm of understanding a user’s identity and behavioral pat-
terns from digital footprints, considering time and tempo-

ral relations among data points is crucial. While pinpointing
exact event timestamps may not be necessary, recognizing
temporal proximity is crucial. For example, a 15-minute gap
between a user’s Instagram post and their activity of liking
a friend’s post on Facebook can still be considered synchro-
nized. To achieve this, we divide a day into T time segments,
denoted as {s1, s2, ..., sT }. If data from different channels
fall within the same time segment, we consider them syn-
chronized. The value of T is context-dependent, allowing
for flexibility in understanding user behavior.

As shown in Figure 1, our approach utilizes a knowledge-
aware neurosymbolic pipeline to address challenges C2 and
C3. It achieves this by consolidating content from various
sources into a predefined graph structure and transforming
it into a ready-to-reason ontology structure. The following
provides further technical details of the proposed approach.

Task Formalization:
Data Channels and Embeddings: We assume there are L
data channels providing data instances with the specific data
types. For instance, channel c1 may deliver images from the
user’s Instagram account, while channel c2 may provide tex-
tual information, such as user comments on a tweet. For ev-
ery piece of data obtained from channel ci, we utilize an em-
bedding module denoted as ei, designated for content em-
bedding. This module is tailored to the specific data type,



for instance, pipelines based on pre-trained Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) for image content or
CLIP (Radford et al. 2021) for image-text combination con-
tents. Given the data, the content embedding pipeline gener-
ates data embeddings denoted as eici ∈ R(N×Di), where N
is the number of instances and Di represents the dimension-
ality of the data embeddings corresponding to channel ci.
As shown in Figure 1, the embeddings received from differ-
ent modules are concatenated to feed the Situation Attention
module explained in the following sections.

Graph Embedding: Knowledge awareness within our
model implies its ability to be guided by external knowl-
edge sources, thus enhancing the feature extraction and
learning processes. To facilitate this, we employ a pre-
defined knowledge graph known as the Situation Graph
(SG). The SG serves as a formal representation for defin-
ing various situations, encompassing aspects such as am-
biance, sentiment, emotions, qualitative time, and location
information. It operates as a filtering mechanism, stream-
lining the extraction of relevant details from diverse data
channels while adhering to the predefined structure. We
represent the SG knowledge graph as G(V,E), where V
consists of nodes such as Sentiment (including types
like Positive, Negative, and Neutral), Emotion,
Location, and more. These nodes are interconnected by
edges denoted in E, signifying properties and relationships.
For instance, the triple (tweet 123, hasSentiment,
PositiveSentiment) is a common example within
SG. To learn how to extract a formal representation of sit-
uations from content in each channel (an end-to-end pro-
cess), we employ a module to generate embeddings for the
relevant entities within the SG graph. To achieve this, we
employ GraphSAGE (Hamilton, Ying, and Leskovec 2017)
or node2vec (Grover and Leskovec 2016), which, while
not pre-trained, are purpose-built to effectively learn graph
structures and transform them into vector representations.
Alternatively, we can convert knowledge graph triples, such
as those in SG, into sentences and utilize language models
like K-BERT (Liu et al. 2020), leveraging BERT (Devlin
et al. 2018), to generate graph embeddings. This approach
facilitates the development of high-performance models
with significantly reduced data requirements.

The embedding resulted from the chosen graph embed-
ding model is represented as esg ∈ R(P×Dsg), where P =
|V | + |E| represents the total number of entities (including
nodes and edges) in the graph, and Dsg signifies the dimen-
sionality of the graph embeddings.

Situation-Attention Module: The model employs a
knowledge attention module, referred to as Situation Atten-
tion, to align and calculate attention scores between data
embeddings and the SG embedding. It takes as input the
concatenated data embeddings from all channels, denoted
as e = [e1c1 , e

2
c2 , . . . , e

L
cL ] ∈ R(N×ΣDi), along with the SG

embedding esg .
The attention scores represented by A ∈ R(N×P ) (where

N is the number of instances and P is the number of en-
tities in the SG), capture the relevance of data embeddings

to different entities in the graph. Subsequently, a softmax
operation is applied along the rows (instances) to obtain
attention weights, denoted as W ∈ R(N×P ). Each entry
W [i, j] in the attention matrix signifies the weight or at-
tention allocated to the SG entity j for the i-th instance in
the data. To create a consolidated knowledge-aware repre-
sentation for each instance, a weighted combination of the
SG embedding and attention weights is computed. Specifi-
cally, for each instance i, the weighted combination is cal-
culated as follows: O[i, :] = Σ(W [i, j] × esg[j, :]). In this
equation, j spans across all SG entities. The formula com-
putes a weighted sum of SG embeddings, where each em-
bedding is weighted by the attention score associated with
the corresponding SG entity for the particular instance. This
process results in an aggregated representation for each in-
stance, taking into account the relevance of different SG en-
tities based on the computed attention weights.

SG Entity Classification: The attention layer is followed
by the entity classification layer to classify the instance fea-
tures as entities in the SG graph. This layer takes as input the
weighted combination of embeddings O. The size of the out-
put layer is equal to the number of entities in the SG graph
(P ). Applying a softmax activation function to the output
of the entity classification layer will convert the aggregated
representation into a probability distribution over the SG en-
tities for each instance. The resulting probabilities for each
instance feature to be classified as one of the entities in the
SG graph represent the output of the softmax layer.

To train the model and ensure the creation of a consis-
tent SG graph populated with content received from the var-
ious channels, we employ a loss function that promotes the
alignment of predicted graph embeddings with the ground
truth representations derived from the channel content, thus
guiding the model towards accurate and coherent SG graph
construction. Depending on the size and quality of the train-
ing dataset, different loss functions may be utilized, rang-
ing from the cross-entropy-based approaches to custom ones
specifically designed for the task of graph population. The
loss cross-entropy-based loss function measuring the binary
classification error for each label or entity independently is
defined as follows: where Ŷi is the predicted probabilities
for each entity for the i-th instance, Yi is the ground truth
one-hot encoded labels for each entity for the i-th instance,
N is the number of instances, and P is the number of entities
in the SG graph:

Loss = −
1

N

N∑
i=1

P∑
j=1

(Yi[j]. log(Ŷi[j])) + ((1− Yi[j]). log(1− Ŷi[j]))

By classifying the content obtained within a specific time
segment into entities of the SG graph, we generate a popu-
lated SG graph. This process is repeated for each time seg-
ment, yielding a sequence of knowledge graphs, each ded-
icated to a particular time segment (si). These graphs en-
capsulate the chronological evolution of an individual’s be-
havior, emotions, or environmental perception, which in turn
informs the identity inference module.



Figure 2: A view of the DUL ontology enriched with psy-
chology’s formal theories on identity and mental models

Identity Inference Module: The trained model produces
a series of Situation Graphs (SGs), collectively represent-
ing a sequence of scenarios experienced by an individual.
To fully leverage the potential of the structured information,
we integrate the reasoning layer, consisting of the identity
reasoning module, with an upper-level ontology known as
DOLCE Ultralite (DUL) (Gangemi et al. 2002). Specifically,
DUL facilitates the representation of situations, which in our
context correspond to the distinctly united sequential con-
tents of SG graphs. The DUL ontology, as shown in Figure 2,
is also enriched with formal theories from fields like psy-
chology and cognitive science concerning concepts related
to identity and mental models (Rahnama, Alirezaie, and
Pentland 2021). These theories establish connections be-
tween various situations an individual may encounter (e.g.,
listening to a specific music genre while driving) and their
corresponding personality traits (Ruth 2020). Below are
simplified examples of facts and rules about the five main
personality traits (Openness, Conscientiousness, Extrover-
sion, Agreeableness, and Neuroticism) and their relations
with different daily activities, extracted from psychological
studies incorporated into the expanded DUL ontology:

O(x) : x has a high degree of Openness to new exps.

C(x) : x has a high degree of Conscientiousness.

E(x) : x has a high degree of Extraversion.

A(x) : x has a high degree of Agreeableness.

N(x) : x has a high degree of Neuroticism.

Situation(x, s) : x encounters situation s.

∃s [Situation(x, s) ∧ s(creative activity, experimental music)] ⇒ O(x)
∃s [Situation(x, s) ∧ s(studying, instrumental music)] ⇒ C(x)
∃s [Situation(x, s) ∧ s(eco-activity, friends)] ⇒ E(x)
∃s [Situation(x, s) ∧ s(solitude, ambient sounds)] ⇒ N(x)
∃s [Situation(x, s) ∧ s(family gathering, food, entertainment)] ⇒ A(x)

The seamless integration of rules and represented situa-
tions enables the model to effectively infer the most likely

personality traits of an individual, drawing from their con-
sistent behavioral patterns. The incorporation of additional
rules and more detailed capture of situations enhances the
accuracy of identity inference for the individual.

Decentralized Data & Distributed Learning:
The first challenge (C1) in constructing an individual’s
digital identity model is the task of efficiently collecting
data from a multitude of sources while respecting user pri-
vacy, ensuring that personal information remains protected
throughout. Our proposed model’s architecture, as depicted
in Figure 1, facilitates distributed data collection. This setup
assumes that each channel and the subsequent embedding
module are situated on separate devices in close proximity
to the data. Importantly, our model is trained exclusively on
an individual’s digital footprint, with their consent.

Given the decentralized nature of digital platforms and the
wide range of data types (e.g., text, images, videos, loca-
tions, environmental data, etc.) that require varied learning
approaches, we advocate the adoption of federated (or col-
laborative) learning. This distributed machine learning tech-
nique, as discussed in (Lalitha 2018), allows decentralized
platforms with localized data to collaboratively train a model
without the need to share raw data.

Discussion
This paper proposes an approach for personalized models
using structural learning, allowing people’s expertise to be-
come more transferable in the form of a knowledge lens or
perspective. We believe approaches like these contribute to
the formation of a new internet ecology in which users can
use decentralized and more privacy-preserved capabilities to
share knowledge with each other and within smaller trust
circles, such as intergenerational families. We intend to con-
tinue disseminating our work with more data-driven exper-
iments in subsequent publications and also highlight appli-
cations of this framework in areas such as education, media,
augmented eternity, digital immortality, and politics.

Ethical Statement.
Our proposed idea of generating digital identity models car-
ries both societal benefits, like enhanced data control and
security, as well as potential risks, such as data security, data
governance, consent, privacy and information sentiency. We
are carefully and meticulously incorporating these risks into
our research plans to carefully analyze, assess, validate and
publish our approaches on how we overcome these chal-
lenges. We believe addressing these challenges will be an-
other key contribution of our research in this and subsequent
publications under our research agenda.
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